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Chapter 2

Essentials of Linear Viscoelasticity

In this chapter the fundamentals of the linear theory of viscoelas-

ticity are presented in the one-dimensional case. The classical ap-

proaches based on integral and differential constitutive equations are

reviewed. The application of the Laplace transform leads to the so-

called material functions (or step responses) and their (continuous

and discrete) time spectra related to the creep and relaxation tests.

The application of the Fourier transform leads to the so-called dy-

namic functions (or harmonic responses) related to the storage and

dissipation of energy.

2.1 Introduction

We denote the stress by σ = σ(x, t) and the strain by ε = ε(x, t)

where x and t are the space and time variables, respectively. For the

sake of convenience, both stress and strain are intended to be normal-

ized, i.e. scaled with respect to a suitable reference state {σ∗ , ε∗} .
At sufficiently small (theoretically infinitesimal) strains, the be-

haviour of a viscoelastic body is well described by the linear theory

of viscoelasticity. According to this theory, the body may be consid-

ered as a linear system with the stress (or strain) as the excitation

function (input) and the strain (or stress) as the response function

(output).

To derive the most general stress–strain relations, also referred as

the constitutive equations, two fundamental hypotheses are required:

(i) invariance for time translation and (ii) causality; the former means

23
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that a time shift in the input results in an equal shift in the output,

the latter that the output for any instant t1 depends on the values of

the input only for t ≤ t1. Furthermore, in this respect, the response

functions to an excitation expressed by the unit step function Θ(t),

known as Heaviside function defined as

Θ(t) =

{
0 if t < 0 ,

1 if t > 0 ,

are known to play a fundamental role both from a mathematical and

physical point of view.

The creep test and the relaxation test. We denote by J(t) the

strain response to the unit step of stress, according to the creep test

σ(t) = Θ(t) =⇒ ε(t) = J(t) , (2.1a)

and by G(t) the stress response to a unit step of strain, according to

the relaxation test

ε(t) = Θ(t) =⇒ σ(t) = G(t) . (2.1b)

The functions J(t) and G(t) are usually referred as the creep com-

pliance and relaxation modulus respectively, or, simply, the material

functions of the viscoelastic body. In view of the causality require-

ment, both functions are causal, i.e. vanishing for t < 0. Implicitly,

we assume that all our causal functions, including J(t) and G(t),

are intended from now on to be multiplied by the Heaviside function

Θ(t).

The limiting values of the material functions for t → 0+ and

t→ +∞ are related to the instantaneous (or glass) and equilibrium

behaviours of the viscoelastic body, respectively. As a consequence,

it is usual to set{
Jg := J(0+) glass compliance ,

Je := J(+∞) equilibrium compliance ;
(2.2a)

and {
Gg := G(0+) glass modulus ,

Ge := G(+∞) equilibrium modulus .
(2.2b)
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From experimental evidence, both the material functions are non-

negative. Furthermore, for 0 < t < +∞, J(t) turns out to be a

non-decreasing function, whereas G(t) a non-increasing function. As-

suming that J(t) is a differentiable, increasing function of time, we

write

t ∈ IR+ ,
dJ

dt
> 0 =⇒ 0 ≤ J(0+) < J(t) < J(+∞) ≤ +∞ . (2.3a)

Similarly, assuming that G(t) is a differentiable, decreasing function

of time, we write

t ∈ IR+ ,
dG

dt
< 0 =⇒ +∞ ≥ G(0+) > G(t) > G(+∞) ≥ 0 . (2.3b)

The above characteristics of monotonicity of J(t) andG(t) are related

respectively to the physical phenomena of strain creep and stress re-

laxation, which indeed are experimentally observed. Later on, we

shall outline more restrictive mathematical conditions that the ma-

terial functions must usually satisfy to agree with the most common

experimental observations.

The creep representation and the relaxation representation.

Hereafter, by using the Boltzmann superposition principle, we are go-

ing to show that the general stress – strain relation is expressed in

terms of one material function [J(t) or G(t)] through a linear heredi-

tary integral of Stieltjes type. Choosing the creep representation, we

obtain

ε(t) =

∫ t

−∞
J(t− τ) dσ(τ) . (2.4a)

Similarly, in the relaxation representation, we have

σ(t) =

∫ t

−∞
G(t− τ) dε(τ) . (2.4b)

In fact, since the responses are to be invariant for time translation,

we note that in J(t) and G(t), t is the time lag since application of

stress or strain. In other words, an input σ(t) = σ1 Θ(t− τ1) [ ε(t) =

ε1 Θ(t− τ1) ] would be accompanied by an output ε(t) = σ1 J(t− τ1)

[σ(t) = ε1G(t − τ1) ]. As a consequence, a series of N stress steps

∆σn = σn+1 − σn (n = 1, 2, . . . , N) added consecutively at times

τN > τN−1 > · · · > τ1 > −∞ ,
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will induce the total strain according to

σ(t) =
N∑
n=1

∆σn Θ(t− τn) =⇒ ε(t) =
N∑
n=1

∆σn J(t− τn) .

We can approximate arbitrarily well any physically realizable stress

history by a step history involving an arbitrarily large number of

arbitrarily small steps. By passing to the limit in the sums above,

we obtain the strain and stress responses to arbitrary stress and

strain histories according to Eqs. (2.4a) and (2.4b), respectively. In

fact

σ(t) =

∫ t

−∞
Θ(t−τ) dσ(τ) =

∫ t

−∞
dσ(τ) =⇒ ε(t) =

∫ t

−∞
J(t−τ) dσ(τ) ,

and

ε(t) =

∫ t

−∞
Θ(t−τ) dε(τ) =

∫ t

−∞
dε(τ) =⇒ σ(t) =

∫ t

−∞
G(t−τ) dε(τ) .

Wherever the stress [strain] history σ(t) [ ε(t) ] is differentiable, by

dσ(τ) [ dε(τ) ] we mean σ̇(τ) dτ [ε̇(τ) dτ ], where we have denoted by

a superposed dot the derivative with respect to the variable τ . If σ(t)

[ ε(t) ] has a jump discontinuity at a certain time τ0, the corresponding

contribution is intended to be ∆σ0 J(t− τ0) [ ∆ε0G(t− τ0) ].

All the above relations are thus a consequence of the Boltzmann

superposition principle, which states that in linear viscoelastic sys-

tems the total response to a stress [strain] history is equivalent (in

some way) to the sum of the responses to a sequence of incremental

stress [strain] histories.

2.2 History in IR+: the Laplace transform approach

Usually, the viscoelastic body is quiescent for all times prior to some

starting instant that we assume as t = 0; in this case, under the

hypotheses of causal histories, differentiable for t ∈ IR+ , the creep

and relaxation representations (2.4a) and (2.4b) reduce to

ε(t) =

∫ t

0−
J(t− τ) dσ(τ) = σ(0+) J(t) +

∫ t

0
J(t− τ) σ̇(τ) dτ , (2.5a)

σ(t) =

∫ t

0−
G(t− τ) dε(τ) = ε(0+)G(t) +

∫ t

0
G(t− τ) ε̇(τ) dτ . (2.5b)
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Unless and until we find it makes any sense to do otherwise, we

implicitly restrict our attention to causal histories.

Another form of the constitutive equations can be obtained from

Eqs. (2.5a) and (2.5b) by integrating by parts. We thus have

ε(t) = Jg σ(t) +

∫ t

0
J̇(t− τ)σ(τ) dτ , (2.6a)

and, if Gg <∞,

σ(t) = Gg ε(t) +

∫ t

0
Ġ(t− τ) ε(τ) dτ . (2.6b)

The causal functions J̇(t) and Ġ(t) are referred as the rate of creep

(compliance) and the rate of relaxation (modulus), respectively; they

play the role of memory functions in the constitutive equations (2.6a)

and (2.6b). If Jg > 0 or Gg > 0 it may be convenient to consider the

non-dimensional form of the memory functions obtained by normal-

izing them to the glass values1.

The integrals from 0 to t in the R.H.S of Eqs. (2.5a) and (2.5b)

and (2.6a) and (2.6b) can be re-written using the convolution form

and then dealt with the technique of the Laplace transforms, accord-

ing to the notation introduced in Chapter 1,

f(t) ∗ g(t)÷ f̃(s) g̃(s) .

Then, we show that application of the Laplace transform to Eqs.

(2.5a) and (2.5b) and (2.6a) and (2.6b) yields

ε̃(s) = s J̃(s) σ̃(s) , (2.7a)

σ̃(s) = s G̃(s) ε̃(s) . (2.7b)

This means that the use of Laplace transforms allow us to write the

creep and relaxation representations in a unique form, proper for

each of them.

In fact, Eq. (2.7a) is deduced from (2.5a) or (2.6a) according to

ε̃(s) = σ(0+) J̃(s)+J̃(s) [s σ̃(s)−σ(0+)] = Jg σ̃(s)+[s J̃(s)−Jg] σ̃(s) ,
1See later in Chapters 4 and 5 when we will use the non-dimensional memory

functions

Ψ(t) :=
1

Jg

dJ

dt
, Φ(t) :=

1

Gg

dG

dt
.
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and, similarly, Eq. (2.7b) is deduced from (2.5b) or (2.6b) according

to

σ̃(s) = ε(0+) G̃(s)+G̃(s) [s ε̃(s)−ε(0+)] = Gg ε̃(s)+[s G̃(s)−Gg] ε̃(s) .

We notice that (2.7b) is valid also if Gg = ∞, provided that we

use a more general approach to the Laplace transform, based on the

theory of generalized functions, see e.g. [Doetsch (1974); Ghizzetti

and Ossicini (1971); Zemanian (1972)].

2.3 The four types of viscoelasticity

Since the creep and relaxation integral formulations must agree with

each other, there must be a one-to-one correspondence between the

relaxation modulus and the creep compliance. The basic relation

between J(t) and G(t) is found noticing the following reciprocity

relation in the Laplace domain, deduced from Eqs. (2.7a) (2.7b),

s J̃(s) =
1

s G̃(s)
⇐⇒ J̃(s) G̃(s) =

1

s2
. (2.8)

Indeed, inverting the R.H.S. of (2.8), we obtain

J(t) ∗ G(t) :=

∫ t

0
J(t− τ)G(τ) dτ = t . (2.9)

We can also obtain (2.8) noticing that, if the strain causal history is

J(t), then the stress response is Θ(t), the unit step function, so Eqs.

(2.4a) and (2.5a) give

Θ(t) =

∫ t

0−
G(t− τ) dJ(τ) = Jg G(t) +

∫ t

0
G(t− τ) J̇(τ) dτ . (2.10)

Then, applying the Laplace transform to (2.10) yields

1

s
= Jg G̃(s) + G̃(s)

[
sJ̃(s)− Jg

]
.

Following [Pipkin (1986)], Eq. (2.10) allows us to obtain some

notable relations in the time domain (inequalities and integral equa-

tions) concerning the material functions. Taking it for granted that,
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for 0 ≤ t ≤ +∞ , J(t) is non-negative and increasing, and G(t) is

non-negative and decreasing, Eq. (2.10) yields

1 =

∫ t

0−
G(t− τ) dJ(τ) ≥ G(t)

∫ t

0−
dJ(τ) = G(t) J(t) ,

namely

J(t)G(t) ≤ 1 . (2.11)

We also note that if Jg 6= 0, we can rearrange (2.10) as a Volterra

integral equation of the second kind, treating G(t) as the unknown

and J(t) as the known function,

G(t) = J−1
g − J−1

g

∫ t

0
J̇(t− τ)G(τ) dτ . (2.12a)

Similarly, if G(t) is given and Gg 6=∞, the equation for J(t) is

J(t) = G−1
g −G−1

g

∫ t

0
Ġ(t− τ) J(τ) dτ . (2.12b)

Pipkin has also pointed out the following inequalities

G(t)

∫ t

0
J(τ) dτ ≤ t ≤ J(t)

∫ t

0
G(τ) dτ . (2.13)

One of these inequalities (L.H.S.) is not as close as (2.11); the other

(R.H.S.) gives new information. Furthermore, using with the due

care the limiting theorems for the Laplace transform

f(0+) = lim
s→∞

sf̃(s) , f(+∞) = lim
s→0

sf̃(s) ,

we can deduce from the L.H.S of (2.8) that

Jg =
1

Gg
, Je =

1

Ge
, (2.14)

with the convention that 0 and +∞ are reciprocal to each other.

The remarkable relations allow us to classify the viscoelastic bod-

ies according to their instantaneous and equilibrium responses. In

fact, from Eqs. (2.2), (2.3) and (2.14) we easily recognize four possi-

bilities for the limiting values of the creep compliance and relaxation

modulus, as listed in Table 2.1.
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Type Jg Je Gg Ge
I > 0 <∞ <∞ > 0

II > 0 =∞ <∞ = 0

III = 0 <∞ =∞ > 0

IV = 0 =∞ =∞ = 0

Table 2.1 The four types of viscoelasticity.

We note that the viscoelastic bodies of type I exhibit both instanta-

neous and equilibrium elasticity, so their behaviour appears close to

the purely elastic one for sufficiently short and long times. The bod-

ies of type II and IV exhibit a complete stress relaxation (at constant

strain) since Ge = 0 and an infinite strain creep (at constant stress)

since Je = ∞ , so they do not show equilibrium elasticity. Finally,

the bodies of type III and IV do not show instantaneous elasticity

since Jg = 0 (Gg =∞).

Other properties will be pointed out later on.

2.4 The classical mechanical models

To get some feeling for linear viscoelastic behaviour, it is useful to

consider the simpler behaviour of analog mechanical models. They

are constructed from linear springs and dashpots, disposed singly

and in branches of two (in series or in parallel) as it is shown in Fig.

2.1.

As analog of stress and strain, we use the total extending force and

the total extension, respectively. We note that when two elements

are combined in series [in parallel], their compliances [moduli] are

additive. This can be stated as a combination rule: creep compliances

add in series, while relaxation moduli add in parallel.

The important role in the literature of the mechanical models is

justified by the historical development. In fact, the early theories

were established with the aid of these models, which are still help-

ful to visualize properties and laws of the general theory, using the

combination rule.

Now, it is worthwhile to consider the simple models of Fig. 2.1
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Fig. 2.1 The representations of the basic mechanical models: a) spring for
Hooke, b) dashpot for Newton, c) spring and dashpot in parallel for Voigt, d)
spring and dashpot in series for Maxwell.

by providing their governing stress–strain relations along with the

related material functions.

The Hooke model. The spring a) in Fig. 2.1 is the elastic (or

storage) element, as for it the force is proportional to the extension;

it represents a perfect elastic body obeying the Hooke law. This

model is thus referred to as the Hooke model. If we denote by m the

pertinent elastic modulus we have

Hooke model : σ(t) = mε(t) , (2.15a)

so {
J(t) = 1/m ,

G(t) = m.
(2.15b)

In this case we have no creep nor relaxation so that the creep com-

pliance and the relaxation modulus are constant functions: J(t) ≡
Jg ≡ Je = 1/m; G(t) ≡ Gg ≡ Ge = m.

The Newton model. The dashpot b) in Fig. 2.1 is the viscous (or

dissipative) element, the force being proportional to rate of extension;

it represents a perfectly viscous body obeying the Newton law. This

model is thus referred to as the Newton model. Denoting by b1 the

pertinent viscosity coefficient, we have

Newton model : σ(t) = b1
dε

dt
(2.16a)
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so J(t) =
t

b1
,

G(t) = b1 δ(t) .
(2.16b)

In this case we have a linear creep J(t) = J+t and instantaneous

relaxation G(t) = G− δ(t) with G− = 1/J+ = b1.

We note that the Hooke and Newton models represent the limiting

cases of viscoelastic bodies of type I and IV, respectively.

The Voigt model. A branch constituted by a spring in parallel

with a dashpot is known as the Voigt model, c) in Fig. 2.1. We have

V oigt model : σ(t) = mε(t) + b1
dε

dt
, (2.17a)

so J(t) = J1

(
1− e−t/τε

)
, J1 =

1

m
, τε =

b1
m
,

G(t) = Ge +G− δ(t) , Ge = m, G− = b1 ,
(2.17b)

where τε is referred to as the retardation time.

The Maxwell model. A branch constituted by a spring in series

with a dashpot is known as the Maxwell model, d) in Fig.2.1. We

have

Maxwell model : σ(t) + a1
dσ

dt
= b1

dε

dt
, (2.18a)

so 
J(t) = Jg + J+ t , Jg =

a1

b1
, J+ =

1

b1
,

G(t) = G1 e−t/τσ , G1 =
b1
a1
, τσ = a1 ,

(2.18b)

where τσ is is referred to as the the relaxation time.

The Voigt and the Maxwell models are thus the simplest viscoelas-

tic bodies of type III and II, respectively. The Voigt model exhibits

an exponential (reversible) strain creep but no stress relaxation; it

is also referred as the retardation element. The Maxwell model ex-

hibits an exponential (reversible) stress relaxation and a linear (non

reversible) strain creep; it is also referred to as the relaxation element.

Based on the combination rule introduced above, we can continue

the previous procedure in order to construct the simplest models of

type I and IV that require three parameters.
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The Zener model. The simplest viscoelastic body of type I is ob-

tained by adding a spring either in series to a Voigt model or in par-

allel to a Maxwell model, respectively. In this way, according to the

combination rule, we add a positive constant both to the Voigt-like

creep compliance and to the Maxwell-like relaxation modulus so that

Jg > 0 and Ge > 0. Such a model was considered by Zener [Zener

(1948)] with the denomination of Standard Linear Solid (S.L.S.) and

will be referred here also as the Zener model. We have

Zener model :

[
1 + a1

d

dt

]
σ(t) =

[
m+ b1

d

dt

]
ε(t) , (2.19a)

so
J(t) = Jg + J1

(
1− e−t/τε

)
, Jg =

a1

b1
, J1 =

1

m
− a1

b1
, τε =

b1
m
,

G(t) = Ge +G1 e−t/τσ , Ge = m, G1 =
b1
a1
−m, τσ = a1 .

(2.19b)

We point out the condition 0 < m < b1/a1 in order J1, G1 be pos-

itive and hence 0 < Jg < Je < ∞ and 0 < Ge < Gg < ∞ . As

a consequence, we note that, for the S.L.S. model, the retardation

time must be greater than the relaxation time, i.e. 0 < τσ < τε <∞ .

The anti-Zener model. The simplest viscoelastic body of type

IV requires three parameters, i.e. a1 , b1 , b2 ; it is obtained by adding

a dashpot either in series to a Voigt model or in parallel to a Maxwell

model (Fig. 2.1c and Fig 2.1d, respectively). According to the com-

bination rule, we add a linear term to the Voigt-like creep compliance

and a delta impulsive term to the Maxwell-like relaxation modulus

so that Je = ∞ and Gg = ∞. We may refer to this model as the

anti-Zener model. We have

anti−Zenermodel :

[
1 + a1

d

dt

]
σ(t)=

[
b1
d

dt
+ b2

d2

dt2

]
ε(t), (2.20a)

so
J(t)=J+t+ J1

(
1− e−t/τε

)
, J+ =

1

b1
, J1 =

a1

b1
− b2
b21
, τε=

b2
b1
,

G(t)=G− δ(t) +G1 e−t/τσ , G−=
b2
a1
, G1 =

b1
a1
− b2
a2

1

, τσ = a1.

(2.20b)
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We point out the condition 0 < b2/b1 < a1 in order J1, G1 to be

positive. As a consequence we note that, for the anti-Zener model,

the relaxation time must be greater than the retardation time, i.e.

0 < τε < τσ <∞ , on the contrary of the Zener (S.L.S.) model.

In Fig. 2.2 we exhibit the mechanical representations of the

Zener model [a), b)] and the anti-Zener model [c), d)]. Because

of their main characteristics, these models can be referred as the

three-element elastic model and the three-element viscous model, re-

spectively.

Fig. 2.2 The mechanical representations of the Zener [a), b)] and anti-Zener[c),
d)] models: a) spring in series with Voigt, b) spring in parallel with Maxwell, c)
dashpot in series with Voigt, d) dashpot in parallel with Maxwell.

By using the combination rule, general mechanical models can

obtained whose material functions turn out to be of the typeJ(t) = Jg +
∑

n Jn

(
1− e−t/τε,n

)
+ J+ t ,

G(t) = Ge +
∑

nGn e−t/τσ,n +G− δ(t) ,
(2.21)

where all the coefficient are non negative. We note that the four

types of viscoelasticity of Table 2.1 are obtained from Eqs. (2.21) by

taking into account that{
Je <∞ ⇐⇒ J+ = 0 , Je =∞ ⇐⇒ J+ 6= 0 ,

Gg <∞ ⇐⇒ G− = 0 , Gg =∞ ⇐⇒ G− 6= 0 .
(2.22)
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The canonic forms. In Fig. 2.3, following [Gross (1953)], we

exhibit the general mechanical representations of Eqs. (2.21) in terms

of springs and dashpots (illustrated here by boxes), so summarizing

the four canonic forms.

Fig. 2.3 The four types of canonic forms for the mechanical models: a) in creep
representation; b) in relaxation representation.

The reader must note that in Fig. 2.3 the boxes denoted by Jg, Ge
represent springs, those denoted by J+, G− represent dashpots and

those denoted by {Jn, τε,n} and by {Gn, τσ,n} represent a sequence of

Voigt models connected in series (compound Voigt model) and a se-

quence of Maxwell models connected in parallel (compound Maxwell

model), respectively. The compound Voigt and Maxwell models are

represented in Fig. 2.4.

As a matter of fact, each of the two representations can assume

one of the four canonic forms, which are obtained by cutting out

one, both, or none of the two single elements which have appeared

besides the branches. Each of these four forms corresponds to each

of the four types of linear viscoelastic behaviour (indicated in Table

2.1).

We recall that these material functions J(t) and G(t) are interre-

lated because of the reciprocity relation (2.8) in the Laplace domain.
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Fig. 2.4 The mechanical representations of the compound Voigt model (top) and
compound Maxwell model (bottom).

Appealing to the theory of Laplace transforms, we get from (2.21)
s J̃(s) = Jg +

∑
n

Jn
1 + s τε,n

+
J+

s
,

s G̃(s) = Ge +
∑
n

Gn (s τσ,n)

1 + s τσ,n
+G− s .

(2.23)

The second equality can be re-written as

s G̃(s) = (Ge + β)−
∑
n

Gn
1 + s τσ,n

+G− s , with β :=
∑
n

Gn .

Therefore, as a consequence of (2.23), s J̃(s) and s G̃(s) turn out

to be rational functions in C with simple poles and zeros on the

negative real axis Re[s] < 0 and, possibly, with a simple pole or

with a simple zero at s = 0 , respectively. As a consequence, see e.g.
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[Bland (1960)], the above functions can be written as

s J̃(s) =
1

s G̃(s)
=
P (s)

Q(s)
, where


P (s) = 1 +

p∑
k=1

ak s
k ,

Q(s) = m+

q∑
k=1

bk s
k ,

(2.24)

where the orders of the polynomials are equal (q = p) or differ of

unity (q = p + 1) and the zeros are alternating on the negative real

axis. The least zero in absolute magnitude is a zero of Q(s). The

ratio of any coefficient in P (s) to any coefficient in Q(s) is positive.

The four types of viscoelasticity then correspond to whether the least

zero is (J+ 6= 0) or is not (J+ = 0) equal to zero and to whether the

greatest zero in absolute magnitude is a zero of P (s) (Jg 6= 0) or a

zero of Q(s) (Jg = 0). We also point out that the polynomials at the

numerator and denominator are Hurwitz polynomials, in that they

have no zeros for Re[s] > 0, with m ≥ 0 and q = p or q = p + 1.

Furthermore, the resulting rational functions s J̃(s), s G̃(s) turn out

to be positive real functions in C , namely they assume positive real

values for s ∈ IR+ .

The operator equation. According to the classical theory of vis-

coelasticity (see e.g. [Alfrey (1948); Gross (1953)]), the above proper-

ties mean that the stress–strain relation must be a linear differential

equation with constant (positive) coefficients of the following form[
1 +

p∑
k=1

ak
dk

dtk

]
σ(t) =

[
m+

q∑
k=1

bk
dk

dtk

]
ε(t) . (2.25)

Eq. (2.25) is referred to as the operator equation of the mechanical

models, of which we have investigated the most simple cases illus-

trated in Figs. 2.1, 2.2. Of course, the constants m, ak , bk are

expected to be subjected to proper restrictions in order to meet the

physical requirements of realizability. For further details we refer the

interested reader to [Hanyga (2005a); (2005b); (2005c)].

In Table 2.2 we summarize the four cases, which are expected to

occur in the operator equation (2.25), corresponding to the four types

of viscoelasticity.



April 9, 2013 18:41 World Scientific Book - 9in x 6in MAINARDI˙BOOK-FINAL

38 Fractional Calculus and Waves in Linear Viscoelasticy

Type Order m Jg Ge J+ G−
I q = p > 0 ap/bp m 0 0

II q = p = 0 ap/bp 0 1/b1 0

III q = p+ 1 > 0 0 m 0 bq/ap
IV q = p+ 1 = 0 0 0 1/b1 bq/ap

Table 2.2 The four cases of the operator equation.

We recognize that for p = 1 Eq. (2.25) includes the operator

equations for the classical models with two parameters: Voigt and

Maxwell; and with three parameters: Zener and anti-Zener. In fact,

we recover the Voigt model (type III) for m > 0 and p = 0, q = 1,

the Maxwell model (type II) for m = 0 and p = q = 1, the Zener

model (type I) for m > 0 and p = q = 1, and the anti-Zener model

(type IV) for m = 0 and p = 1, q = 2.

The Burgers model. With four parameters we can construct two

models, the former with m = 0 and p = q = 2, the latter with m > 0

and p = 1, q = 2, referred in [Bland (1960)] to as four-element models

of the first kind and of the second kind, respectively.

We restrict our attention to the former model, known as Burgers

model, because it has found numerous applications, specially in geo-

sciences, see e.g. [Klausner (1991); Carcione et al. (2006)]. We note

that such a model is obtained by adding a dashpot or a spring to the

representations of the Zener or of the anti-Zener model, respectively.

Assuming the creep representation the dashpot or the spring is added

in series, so the Burgers model results in a series combination of a

Maxwell element with a Voigt element. Assuming the relaxation

representation, the dashpot or the spring is added in parallel, so the

Burgers model results in two Maxwell elements disposed in parallel.

We refer the reader to Fig. 2.5 for the two mechanical representations

of the Burgers model.

According to our general classification, the Burgers model is thus

a four-element model of type II, defined by the four parameters

{a1, a2, b1, b2}.



April 9, 2013 18:41 World Scientific Book - 9in x 6in MAINARDI˙BOOK-FINAL

Ch. 2: Essentials of Linear Viscoelasticity 39

We have

Burgers model :

[
1 + a1

d

dt
+ a2

d2

dt2

]
σ(t)=

[
b1
d

dt
+ b2

d2

dt2

]
ε(t),

(2.26a)

so J(t) = Jg + J+ t+ J1

(
1− e−t/τε

)
,

G(t) = G1 e−t/τσ,1 +G2 e−t/τσ,2 .
(2.26b)

We leave to the reader to express as an exercise the physical quan-

tities Jg, J+, τε and G1, τσ,1, G2, τσ,2, in terms of the four parameters

{a1, a2, b1, b2} in the operator equation (2.26a).

Fig. 2.5 The mechanical representations of the Burgers model: the creep repre-
sentation (top), the relaxation representation (bottom).
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Remark on the initial conditions :

We note that the initial conditions at t = 0+ for the stress σ(t)

and strain ε(t),

{σ(h)(0+) , h = 0, 1, . . . p− 1} , {ε(k)(0+) , k = 0, 1, . . . q − 1} ,
do not appear in the operator equation, but they are required to be

compatible with the integral equations (2.5a) and (2.5b) and con-

sequently with the corresponding Laplace transforms provided by

Eqs. (2.7a) and (2.7b). Since the above equations do not contain

the initial conditions, some compatibility conditions at t = 0+ must

be implicitly required both for stress and strain. In other words, the

equivalence between the integral equations (2.5a) and (2.5b), and the

differential operator equation (2.25), implies that when we apply the

Laplace transform to both sides of Eq. (2.25) the contributions from

the initial conditions do not appear, namely they are vanishing or

cancel in pair-balance. This can be easily checked for the simplest

classical models described by Eqs. (2.17)–(2.20). For simple exam-

ples, let us consider the Voigt model for which p = 0, q = 1 and

m > 0, see Eq. (2.17a), and the Maxwell model for which p = q = 1

and m = 0, see Eq. (2.18a).

For the Voigt model we get

sσ̃(s) = mε̃(s) + b1
[
sε̃(s)− ε(0+)

]
,

so, for any causal stress and strain histories, it would be

sJ̃(s) =
1

m+ b1s
⇐⇒ ε(0+) = 0 . (2.27a)

We note that the condition ε(0+) = 0 is surely satisfied for any

reasonable stress history since Jg = 0, but is not valid for any rea-

sonable strain history; in fact, if we consider the relaxation test for

which ε(t) = Θ(t) we have ε(0+) = 1. This fact may be understood

recalling that for the Voigt model we have Jg = 0 and Gg =∞ (due

to the delta contribution in the relaxation modulus).

For the Maxwell model we get

σ̃(s) + a1

[
sσ̃(s)− σ(0+)

]
= b1

[
sε̃(s)− ε(0+)

]
,

so, for any causal stress and strain histories it would be

sJ̃(s) =
a1

b1
+

1

b1s
⇐⇒ a1σ(0+) = b1ε(0

+) . (2.27b)
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We now note that the condition a1σ(0+) = b1ε(0
+) is surely satisfied

for any causal history, both in stress and in strain. This fact may be

understood recalling that, for the Maxwell model, we have Jg > 0

and Gg = 1/Jg > 0.

Then we can generalize the above considerations stating that the

compatibility relations of the initial conditions are valid for all the

four types of viscoelasticity, as far as the creep representation is con-

sidered. When the relaxation representation is considered, caution

is required for the types III and IV, for which, for correctness, we

would use the generalized theory of integral transforms suitable just

for dealing with generalized functions.

2.5 The time - and frequency - spectral functions

From the previous analysis of the classical mechanical models in

terms of a finite number of basic elements, one is led to consider

two discrete distributions of characteristic times (the retardation and

the relaxation times), as it has been stated in Eq. (2.21). However,

in more general cases, it is natural to presume the presence of con-

tinuous distributions, so that, for a viscoelastic body, the material

functions turn out to be of the following formJ(t) = Jg + a
∫∞

0 Rε(τ)
(

1− e−t/τ
)
dτ + J+ t ,

G(t) = Ge + b
∫∞

0 Rσ(τ) e−t/τ dτ +G− δ(t) ,
(2.28)

where all the coefficients and functions are non-negative. The func-

tion Rε(τ) is referred to as the retardation spectrum while Rσ(τ) as

the relaxation spectrum. For the sake of convenience we shall omit

the suffix to denote any one of the two spectra; we shall refer to

R(τ) as the time–spectral function in IR+ , with the supplementary

normalization condition
∫∞

0 R(τ) dτ = 1 if the integral of R(τ) in

IR+ is convergent.

The discrete distributions of the classical mechanical models, see

Eqs. (2.21), can be easily recovered from Eqs. (2.28). In fact,

assuming a 6= 0, b 6= 0, we get after a proper use of the delta-Dirac
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generalized functions
Rε(τ) =

1

a

∑
n

Jn δ(τ − τε,n) , a =
∑
n

Jn ,

Rσ(τ) =
1

b

∑
n

Gn δ(τ − τσ,n) , b =
∑
n

Gn .
(2.29)

We now devote particular attention to the time-dependent contri-

butions to the material functions (2.28) which are provided by the

continuous or discrete spectra using for them the notation
Jτ (t) := a

∫ ∞
0

Rε(τ)
(

1− e−t/τ
)
dτ ,

Gτ (t) := b

∫ ∞
0

Rσ(τ) e−t/τ dτ .
(2.30)

We recognize that Jτ (t) (that we refer as the creep function with

spectrum) is a non-decreasing, non-negative function in IR+ with lim-

iting values Jτ (0+) = 0, Jτ (+∞) = a or ∞, whereas Gτ (t) (that we

refer as the relaxation function with spectrum) is a non-increasing,

non-negative function in IR+ with limiting values Gτ (0+) = b or ∞,

Gτ (+∞) = 0. More precisely, in view of the spectral representations

(2.30), we have
Jτ (t) ≥ 0 , (−1)n

dnJτ
dtn

≤ 0 ,

Gτ (t) ≥ 0 , (−1)n
dnGτ
dtn

≥ 0 .

t ≥ 0 , n = 1, 2, . . . . (2.31)

Using a proper terminology of mathematical analysis, see e.g. [Berg

and Forst (1975); Feller (1971); Gripenberg et al. (1990)], Gτ (t) is

a completely monotonic function whereas Jτ (t) is a Bernstein func-

tion, since it is a non-negative function with a completely monotonic

derivative. These properties have been investigated by several au-

thors, including [Molinari (1975)], [Del Piero and Deseri (1995)] and

recently, in a detailed way, by [Hanyga (2005a); Hanyga (2005b);

Hanyga (2005c)].

The determination of the time–spectral functions starting from the

knowledge of the creep and relaxation functions is a problem that

can be formally solved through the Titchmarsh inversion formula
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of the Laplace transform theory according to [Gross (1953)]. For

this purpose let us recall the Gross method of Laplace integral pairs,

which is based on the introduction of the frequency–spectral functions

Sε(γ) and Sσ(γ) defined as

Sε(γ) := a
Rε(1/γ)

γ2
, Sσ(γ) := b

Rσ(1/γ)

γ2
, (2.32)

where γ = 1/τ denotes a retardation or relaxation frequency. We

note that with the above choice it turns out

aRε(τ) dτ = Sε(γ) dγ , bRσ(τ) dτ = Sσ(γ) dγ . (2.33)

Differentiating (2.30) with respect to time yields
J̇τ (t) = a

∫ ∞
0

Rε(τ)

τ
e−t/τ dτ =

∫ ∞
0
γ Sε(γ) e−tγ dγ ,

−Ġτ (t) = b

∫ ∞
0

Rσ(τ)

τ
e−t/τ dτ =

∫ ∞
0
γ Sσ(γ) e−tγ dγ .

(2.34)

We recognize that γ Sε(γ) and γ Sσ(γ) turn out to be the inverse

Laplace transforms of J̇τ (t) and −Ġτ (t) , respectively, where t is now

considered the Laplace transform variable instead of the usual s.

Adopting the usual notation for the Laplace transform pairs, we thus

write 
γ Sε(γ) = a

Rε(1/γ)

γ
÷ J̇τ (t) ,

−γ Sσ(γ) = b
Rσ(1/γ)

γ
÷ Ġτ (t) .

(2.35)

Consequently, when the creep and relaxation functions are given

as analytical expressions, the corresponding frequency distributions

can be derived by standard methods for the inversion of Laplace

transforms; then, by using Eq. (2.32), the time–spectral functions

can be easily derived.

Incidentally, we note that in the expressions defining the time

and frequency spectra, often d(log τ) and d(log γ) rather than dτ and

dγ are involved in the integrals. This choice changes the scaling of

the above spectra in order to better deal with phenomena occurring

on several time (or frequency) scales. In fact, introducing the new

variables u = log τ and v = log γ , where −∞ < u , v < +∞ , the

new spectra are related to the old ones as it follows

R̂(u) du = R(τ) τ dτ , Ŝ(v) dv = S(γ) γ dγ . (2.36)
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Example of time and frequency spectra. As an example of

spectrum determination, we now consider the creep function

Jτ (t) = aEin (t/τ0) , a > 0 , τ0 > 0 , (2.37)

where Ein denotes the modified exponential integral function, de-

fined in the complex plane as an entire function whose integral and

series representations read

Ein (z) =

∫ z
0

1− e−ζ

ζ
dζ = −

∞∑
n=1

(−1)n
zn

nn!
, z ∈ C . (2.38)

For more details, see Appendix D. As a consequence we get

dJτ
dt

(t) = a
1− e−γ0t

t
, γ0 =

1

τ0
. (2.39)

By inspection of a table of Laplace transform pairs we get the inver-

sion and, using (2.35), the following time and frequency–spectra

Rε(τ) =

{
0 , 0 < τ < τ0 ,

1/τ , τ0 < τ <∞ ;
(2.40a)

Sε(γ) =

{
a/γ , 0 < γ < γ0 ,

0 , γ0 < γ <∞ .
(2.40b)

Plotted against log τ and log γ the above spectra are step-wise dis-

tributions.

Stieltjes transforms. To conclude this section, following [Gross

(1953)], we look for the relationship between the Laplace transform

of the creep/relaxation function and the corresponding time or fre-

quency spectral function. If we choose the frequency spectral func-

tion, we expect that a sort of iterated Laplace transform be involved

in the required relationship, in view of the above results. In fact,

applying the Laplace transform to Eq. (2.34) we obtain
sJ̃τ (s) =

∫ ∞
0

γ Sε(γ)

s+ γ
dγ ,

sG̃τ (s) = −
∫ ∞

0

γ Sσ(γ)

s+ γ
dγ +Gτ (0+) .

(2.41)
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Introducing the function

L̃(s) =

∫ ∞
0

γ S(γ)

s+ γ
dγ , (2.42)

where the suffix ε or σ is understood, we recognize that L̃(s) is the

Stieltjes transform of γ S(γ) . The inversion of the Stieltjes transform

may be carried out by Titchmarsh’s formula,

γ S(γ) =
1

π
Im
{
L̃
(
γ e−iπ

)}
=

1

π
lim
δ→0

Im
{
L̃(−γ − iδ)

}
. (2.43)

Consequently, when the Laplace transforms of the creep and relax-

ation functions are given as analytical expressions, the corresponding

frequency distributions can be derived by standard methods for the

inversion of Stieltjes transforms; then, by using Eq. (2.32) the time–

spectral functions can be easily derived.

2.6 History in IR: the Fourier transform approach and

the dynamic functions

In addition to the unit step (that is acting for t ≥ 0), another widely

used form of excitation in viscoelasticity is the harmonic or sinu-

soidal excitation that is acting for all of IR since it is considered

(ideally) applied since t = −∞. The corresponding responses, which

are usually referred to as the dynamic functions, provide, together

with the material functions previously investigated, a complete de-

scription of the viscoelastic behaviour. In fact, according to [Findley

et al. (1976)], creep and relaxation experiments provide information

starting from a lower limit of time which is approximatively of 10 s,

while dynamic experiments with sinusoidal excitations may provide

data from about 10−8 s to about 103 s. Thus there is an overlapping

region (10 s− 103 s) where data can be obtained from both types of

experiments. Furthermore, the dynamic experiments provide infor-

mation about storage and dissipation of the mechanical energy, as

we shall see later.

In the following the basic concepts related to sinusoidal excita-

tions is introduced. It is convenient to use the complex notation
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for sinusoidal functions, i.e. the excitations in stress and strain in

non-dimensional form are written as

σ(t;ω) = e iωt , ε(t;ω) = e iωt , ω > 0 , −∞ < t < +∞ , (2.44)

where ω denotes the angular frequency (f = ω/2π is the cyclic fre-

quency and T = 1/f is the period). Of course, in Eq. (2.44) we

understand to take the real or imaginary part of the exponential in

view of the Euler formula e±iωt = cos ωt± i sin ωt .

For histories of type (2.44), the integral stress–strain relations

(2.4) can be used to provide the corresponding response functions.

We obtain, after an obvious change of variable in the integrals,

σ(t) = e iωt =⇒ ε(t) = J∗(ω) e iωt , J∗(ω) := iω Ĵ(ω) , (2.45a)

and

ε(t) = e iωt =⇒ σ(t) = G∗(ω) eiωt , G∗(ω) := iω Ĝ(ω) , (2.45b)

where Ĵ(ω) =
∫∞

0 J(t) e−iωt dt and Ĝ(ω) =
∫∞

0 G(t) e−iωt dt.
The functions J∗(ω) and G∗(ω) are usually referred as the com-

plex compliance and complex modulus, respectively, or, simply, the

dynamic functions of the viscoelastic body. They are related with

the Fourier transforms of the causal functions J(t) and G(t) and

therefore can be expressed in terms of their Laplace transforms as

follows

J∗(ω) = s J̃(s)
∣∣∣
s=iω

, G∗(ω) = s G̃(s)
∣∣∣
s=iω

, (2.46)

so that, in agreement with the reciprocity relation (2.8),

J∗(ω)G∗(ω) = 1 . (2.47)

2.7 Storage and dissipation of energy: the loss tangent

Introducing the phase shift δ(ω) between the sinusoidal excitation

and the sinusoidal response in Eqs. (2.45a) and (2.45b), we can write

J∗(ω) = J ′(ω)− iJ ′′(ω) = |J∗(ω)| e−iδ(ω) , (2.48a)

and

G∗(ω) = G′(ω) + iG′′(ω) = |G∗(ω)| e +iδ(ω) . (2.48b)
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As a consequence of energy considerations, recalled hereafter by fol-

lowing [Tschoegel (1989)], it turns out that δ(ω) must be positive (in

particular, 0 < δ(ω) < π/2 ) as well as the quantities J ′(ω) , J ′′(ω)

and G′(ω) , G′′(ω) entering Eqs. (2.48a) and (2.48b). Usually, J ′ and

G′ are called the storage compliance and thestorage modulus, respec-

tively, while J ′′ and G′′ are called the loss compliance and the loss

modulus, respectively; as we shall see, the above attributes connote

something to do with energy storage and loss. Furthermore,

tan δ(ω) =
J ′′(ω)

J ′(ω)
=
G′′(ω)

G′(ω)
(2.49)

is referred to as the loss tangent, a quantity that summarizes the

damping ability of a viscoelastic body, as we will show explicitly

below.

During the deformation of a viscoelastic body, part of the total

work of deformation is dissipated as heat through viscous losses, but

the remainder of the deformation-energy is stored elastically. It is

frequently of interest to determine, for a given sample of material in

a given mode of deformation, the total work of deformation as well as

the amount of energy stored and the amount dissipated. Similarly,

one may wish to know the rate at which the energy of deformation

is absorbed by the material or the rate at which it is stored or dissi-

pated.

The rate at which energy is absorbed per unit volume of a vis-

coelastic material during deformation is equal to the stress power,

i.e. the rate at which work is performed. The stress power at time t

is

Ẇ (t) = σ(t) ε̇(t) , (2.50)

i.e. it is the product of the instantaneous stress and rate of strain.

The electrical analog of (2.50) is the well-known relation which states

that the electrical power equals the product of instantaneous volt-

age and current. The total work of deformation or, in other words,

the mechanical energy absorbed per unit volume of material in the

deformation from the initial time t0 up to the current time t, results

in

W (t) =

∫ t

t0

Ẇ (τ) dτ =

∫ t

t0

σ(t) ε̇(τ) dτ . (2.51)
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Assuming the possibility of computing separately the energy stored,

Ws(t) , and the energy dissipated, Wd(t) , we can write

W (t) = Ws(t) +Wd(t) , Ẇ (t) = Ẇs(t) + Ẇd(t) . (2.52)

Please note that all energy or work terms and their derivatives will

henceforth refer to unit volume of the material even when this is not

explicitly stated.

Elastically stored energy is potential energy. Energy can also be

stored inertially as kinetic energy. Such energy storage may be en-

countered in fast loading experiments, e.g. in response to impulsive

excitation, or in wave propagation at high frequency. In the lin-

ear theory of viscoelastic behaviour, however, inertial energy storage

plays no role.

How much of the total energy is stored and how much is dissi-

pated, i.e. the precise form of (2.52), depends, of course, on the nature

of the material on the one hand, and on the type of deformation on

the other. The combination of stored and dissipated energy is conve-

niently based on the representation of linear viscoelastic behaviour

by models (the classical mechanical models) in that, by definition,

the energy is dissipated uniquely in the dashpots and stored uniquely

in the springs.

For the rate of energy dissipation we get

Ẇd(t) =
∑
n

σdn(t) ε̇dn(t) =
∑
n

ηn(t) [ε̇dn(t)]2 , (2.53)

where σdn(t) and ε̇dn(t) are the stress and the rate of strain, re-

spectively, in the n-th dashpot, which are related by the equality

σdn(t) = ηn ε̇dn(t) with ηn denoting the coefficient of viscosity.

For the energy storage we get

Ws(t) =
∑
n

∫ t

t0

σsn(τ) ε̇sn(τ) dτ

=
∑
n

Gn

∫ εsn(t)

εsn(0)
εsn(τ) dεsn(τ)

=
1

2

∑
n

Gn [εsn(t)]2 ,

(2.54)
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where σsn(t) and εsn(t) are the stress and the strain, respectively, in

the n-th spring, which are related by the equality σsn(t) = Gn εsn(t)

with Gn denoting the elastic modulus.

Equations (2.53) and (2.54) are the basic relations for determin-

ing energy storage and dissipation, respectively, during a particular

deformation. They are given meaning by finding the stresses, strains,

rates of strain in the springs and dashpots of mechanical models in

the given mode of deformation. The nature of the material is re-

flected in the distribution of the parameters Gn and ηn. Examples

have been given by [Tschoegel (1989)], to which the interested reader

is referred. In the absence of appropriate spring-dashpot models we

may still think of energy-storing and energy-dissipating mechanisms

but without identifying them with mechanical models, and modify

the arguments as needed.

Let us now compute the total energy W (t) and its rate Ẇ (t) for

sinusoidal excitations, and possibly determine the corresponding con-

tributions due to the storing and dissipating mechanisms [Tschoegel

(1989)]. Taking the imaginary parts in (2.45b) we have

ε(t) = sinωt =⇒ σ(t) = G′(ω) sinωt+G′′(ω) cosωt , (2.55)

where the terms on the R.H.S. represent, respectively, the compo-

nents of the stress which are in phase and out of phase with the

strain.

Since the rate of strain is ω cosωt, Eqs. (2.50) and (2.55) lead to

Ẇ (t) =
ω

2
[G′(ω) sin 2ωt+G′′(ω) (1 + cos 2ωt)] . (2.56)

Integration of (2.56), subject to the initial conditionW (0) = 0 , yields

W (t) =
1

4
[G′(ω) (1− cos 2ωt) +G′′(ω) (2ωt+ sin 2ωt)] . (2.57)

In general, all storing mechanisms are not in phase as well as all

dissipating mechanisms, so that in Eqs. (2.56) and (2.57) we cannot

recognize the partial contributions to the storage and dissipation of

energy. Only if phase coherence is assumed among the energy storing

mechanisms on the one hand and the energy dissipating mechanisms

on the other, we can easily separate the energy stored from that

dissipated. We get

Ẇ c
s (t) =

ω

2
G′(ω) sin 2ωt , Ẇ c

d (t) =
ω

2
G′′(ω) (1 + cos 2ωt) , (2.58)
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hence

W c
s (t) =

G′(ω)

4
(1−cos 2ωt), W c

d (t) =
G′′(ω)

4
(2ωt+sin 2ωt), (2.59)

where the superscript c points out the hypothesis of coherence.

For the stored energy, a useful parameter is the average taken

over a full cycle of the excitation. We find from (2.59)

〈Ws(ω)〉 :=
1

T

∫ t+T

t
W c
s (τ) dτ

=
ωG′(ω)

8π

∫ 2π/ω

0
(1− cos 2ωτ) dτ =

G′(ω)

4
,

(2.60)

which is one half of the maximum coherently storable energy.

For the dissipated energy we consider the amount of energy that

would be dissipated coherently over a full cycle of the excitation. We

find from (2.56)

∆Wd(ω) :=

∫ t+T

t
Ẇ c
d (τ) dτ

=
ωG′′(ω)

2

∫ 2π/ω

0
(1 + cos 2ωτ) dτ = πG′′(ω) .

(2.61)

We recognize that Eqs. (2.60) and (2.61) justify the names of G′(ω)

and G′′(ω) as storage and loss modulus, respectively.

Usually the dissipation in a viscoelastic medium is measured by in-

troducing the so-called specific dissipation function, or internal fric-

tion, defined as

Q−1(ω) =
1

2π

∆Wd

W ∗s
, (2.62)

where ∆Wd is the amount of energy dissipated coherently in one

cycle and W ∗s is the peak energy stored coherently during the cycle.

It is worthwhile to note that Q−1 denotes the reciprocal of the so-

called quality factor, that is denoted by Q in electrical engineering,

see e.g. [Knopoff (1956)]. From Eqs. (2.49) and (2.60) and (2.62) it

turns out that

Q−1(ω) = tan δ(ω) . (2.63)
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This equation shows that the damping ability of a linear viscoelastic

body is dependent only on the tangent of the phase angle, namely the

loss tangent introduced in Eq. (2.49), that is a function of frequency

and is a measure of a physical property, but is independent of the

stress and strain amplitudes.

2.8 The dynamic functions for the mechanical models

Let us conclude this chapter with the evaluation of the dynamic

functions (complex moduli or complex compliances) for the classi-

cal mechanical models as it can be derived from their expressions

according to Eq. (2.49), with special emphasis to their loss tangent.

For convenience, let us consider the Zener model, that contains as

limiting cases the Voigt and Maxwell models, whereas we leave as an

exercise the evaluation of the dynamic functions for the anti-Zener

and Burgers models.

For this purpose we consider the dynamic functions, namely the

complex compliance J∗(ω) and the complex modulus G∗(ω), for the

Zener model, that can be derived from the Laplace transforms of the

corresponding material functions J(t) and G(t) according to Eqs.

(2.46). Using Eqs. (2.19a) and (2.19b) we get

J∗(ω) = s J̃(s)
∣∣∣
s=iω

= Jg + J1
1

1 + sτε

∣∣∣∣
s=iω

, (2.64)

G∗(ω) = s G̃(s)
∣∣∣
s=iω

= Ge +G1
sτσ

1 + sτσ

∣∣∣∣
s=iω

. (2.65)

Then we get:

J∗(ω) = J ′(ω)− J ′′(ω) ,


J ′(ω) = Jg + J1

1

1 + ω2τ2
ε

,

J ′′(ω) = J1
ωτε

1 + ω2τ2
ε

;
(2.66)

G∗(ω) = G′(ω) +G′′(ω) ,


G′(ω) = Ge +G1

ωτσ
1 + ω2τ2

σ

,

G′′(ω) = G1
ω2τ2

σ

1 + ω2τ2
σ

.
(2.67)
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Taking into account the definitions in (2.19b) that provide the

interrelations among the constants in Eqs. (2.64) and (2.67), we find

it convenient to introduce a new characteristic time

τ :=
√
τσ τε , (2.68)

and

∆ :=
τε − τσ
τ

=



Je − Jg√
Jg Je

,

Gg −Ge√
Gg Ge

.

(2.69)

Then, after simple algebraic manipulations, the loss tangent for the

Zener model turns out to be

Zener model : tan δ(ω)=
J ′′(ω)

J ′(ω)
=
G′′(ω)

G′(ω)
=∆

ω τ

1 + (ω τ)2
. (2.70)

We easily recognize that the loss tangent for the Zener model attains

its maximum value ∆/2 for ω = 1/τ .

It is instructive to adopt another notation in order to provide

alternative expressions (consistent with the results by [Caputo and

Mainardi (1971b)]), by introducing the characteristic frequencies re-

lated to the retardation and relaxation times:{
α := 1/τε = m/b1 ,

β := 1/τσ = 1/a1 ,
with 0 < α < β <∞ . (2.71)

As a consequence the constitutive equations (2.19a) and (2.19b) for

the Zener model read[
1 +

1

β

d

dt

]
σ(t) = m

[
1 +

1

α

d

dt

]
ε(t) , m = Ge = Gg

α

β
. (2.72)

Then, limiting ourselves to consider the complex modulus, this reads

G∗(ω) = Ge
1 + iω/α

1 + iω/β
= Gg

α+ iω

β + iω
, (2.73)

henceforth

G∗(ω) = G′(ω) +G′′(ω) ,


G′(ω) = Gg

ω2 + αβ

ω2 + β2
,

G′′(ω) = Gg
ω(β − α)

ω2 + β2
.

(2.74)
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Finally, the loss tangent turns out to be

Zener model : tan δ(ω) =
G′′(ω)

G′(ω)
= (β − α)

ω

ω2 + αβ
. (2.75)

Now the loss tangent attains its maximum value (β−α)/(2
√
αβ) for

ω =
√
αβ, a result consistent with that obtained with the previous

notation.

It is instructive to plot in Fig. 2.6 the dynamic functions G′(ω),

G′′(ω) and the loss tangent tan δ(ω) versus ω for the Zener model.

For convenience we use non-dimensional units and we adopt for ω

a logarithmic scale from 10−2 to 102. We take α = 1/2, β = 2 so

αβ ≡ 1, and Gg = 1 so Ge = αβ = 1/4.

Fig. 2.6 Plots of the dynamic functions G′(ω), G′′(ω) and loss tangent tan δ(ω)
versus logω for the Zener model.

As expected, from Eq. (2.75) we easily recover the expressions of

the loss tangent for the limiting cases of the Hooke, Newton, Voigt

and Maxwell models. We obtain:

Hooke model (α = β = 0) : tan δ(ω) = 0 , (2.76)

Newton model (0 = α < β =∞) : tan δ(ω) =∞ , (2.77)

V oigt model (0 < α < β =∞) : tan δ(ω) =
ω

α
= ω τε , (2.78)

Maxwell model (0 = α < β <∞) : tan δ(ω) =
β

ω
=

1

ω τσ
. (2.79)
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We recover that the Hooke model exhibits only energy storage

whereas the Newton model, only energy dissipation. The Voigt and

Maxwell models exhibit both storage and dissipation of energy, in

such a way that their loss tangent turns out to be directly propor-

tional and inversely proportional to the frequency, respectively. As

a consequence, with respect to the loss tangent, the Zener model ex-

hibits characteristics common to the Voigt and Maxell models in the

extremal frequency regions: precisely, its loss tangent is increasing

for very low frequencies (like for the Voigt model), is decreasing for

very high frequencies (like for the Maxwell model), and attains its

(finite) maximum value within an intermediate frequency range.

2.9 Notes

The approach to linear viscoelasticity based on memory functions

(the “hereditary” approach) was started by V. Volterra, e.g. [Volterra

(1913); Volterra (1928); Volterra (1959)] and pursued in Italy by a

number of mathematicians, including: Cisotti, Giorgi, Graffi, Tri-

comi, Benvenuti, Fichera, Caputo, Fabrizio and Morro.

Many results of the Italian school along with the recent theoretical

achievements of the “hereditary” approach are well considered in the

book [Fabrizio and Morro (1992)] and in the papers [Deseri et al.

(2006)], [Fabrizio et al. (2009)].

Our presentation is mostly based on our past review papers [Ca-

puto and Mainardi (1971b); Mainardi (2002a)] and on classical books
[Bland (1960); Gross (1953); Pipkin (1986); Tschoegel (1989)].

For the topic of realizability of the viscoelastic models and for the

related concept of complete monotonicity the reader is referred to

the papers by A. Hanyga, see e.g. [Hanyga (2005a); Hanyga (2005b);

Hanyga (2005c)] and the references therein.

We have not considered (in the present edition) the topic of ladder

networks: the interested reader is invited to consult the excellent

treatise [Tschoegel (1989)] and the references therein. We note that

in the literature of ladder networks, the pioneering contributions by

the late Ellis Strick, Professor of Geophysics at the University of

Pittsburgh, are unfortunately not mentioned: these contributions
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turn out to be hidden in his unpublished lecture notes [Strick (1976)].

To conclude, applications of the linear theory of viscoelasticity

appear in several fields of material sciences such as chemistry (e.g.
[Doi and Edwards (1986); Ferry (1980)], seismology (e.g. [Aki and

Richards (1980); Carcione (2007)]), soil mechanics (e.g. [Klausner

(1991)]), arterial rheology (e.g. [Craiem et al. 2008]), food rheology

(e.g. [Rao and Steffe (1992)]), to mention just a few. Because papers

are spread out in a large number of journals, any reference list cannot

be exhaustive.
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